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Abstract—A capacitance characterization method for thick-

conductor multiple planar ring structures on multiple sub-

strates layers has been made for the first time by extending the
rectangular boundary division method. The region to be con-

sidered in the analysis is divided into subregions of thick-wall
cylindrical tubes in each of which Laplace’s equation is solved
by the method of the separation of variables. A special appli-

cation scheme of the boundary conditions is devised to decrease

the number of necessary equations. Numerical results are
shown for circular disk and planar ring structures in compar-

ison with other available data.

I. INTRODUCTION

T HE CAPACITANCE characterization of planar ring

structures on multiple substrate layers is desirable for

designing various lumped circuits elements in microwave

integrated circuits. In the past, much attention was paid

to circular disk structures in free space, and later to cir-
cular disks on a dielectric substrate backed by a ground

plane with advent of microwave integrated circuits. The

insertion of a dielectric substrate between the disk and the

ground plane adds more complications in finding analyt-

ical expressions for fields. The problem of the circular

disk has been studied by several authors based on Galer-

kin’s method in the Hankel transform domain [1]-[2], the

method of dual integral equations [3]-[7], and Nobel’s

variational method [8].

These methods have dealt with difficulties in selecting

proper basis functions for the charge distribution on the

disk conductor, or in carrying out the infinite integral in-

cluding Bessel functions. Closed form expressions for the

capacitance of the circular disk have been discussed using

the fact that the fringing field of a circular disk is similar

to that of a degenerated microstrip line [9]–[10], and us-

ing the method of matched asymptotic expansions [11].

A more accurate formula valid for both small and large

disks has been given by Wheeler [12].

The historical background for the capacitance calcula-

tion of a circular disk capacitor together with explicit ap-

proximation expressions for the capacitance of a conduc-

tor patch of arbitrary shape has been described by Kuester
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[13]. The work on the capacitance of the planar ring has

been rarely reported, to the author’s knowledge, perhaps

due to the above mentioned difficulties, although some

data have been published based on Galerkin’s method in

the Hankel transform domain with basis functions sym-

metric about the mean radius [ 14]–[15]. Closed form

expressions for the fringing fields outside and inside of a

planar ring have been given based on those of degenerated

microstrip lines and coupled straight lines, respectively,

[10].

We have analyzed the capacitance of zero-thickness

planar ring structures based on the rectangular boundaty

division method in a previous paper [16] where it has been

shown that this analysis method was very accurate and

easy to be employed to analyze more complicated planar

ring structures.

In the above mentioned papers, no one has taken into

account the thickness of conductor, multiple ring struc-

tures, and/or multiple substrate layers. In this paper, we

extend the rectangular boundary division method used in

the previous paper to analyze very general planar struc-

tures taking all of such factors into consideration. The

region to be analyzed is divided into subregions of thick-

wall cylindrical tubes. Laplace’s equation is solved in

each region based on the method of the separation of vari-

ables. A special application scheme of the boundary con-

dition is devised to decrease the number of necessary

equations. The capacitances of several planar ring struc-

tures with various conductor thickness are calculated and

numerical results are compared with the available numer-

ical data in the zero-thickness conductor limit cases.

II. EXTENSION OF RECTANGULAR BOUNDARY DIVISION

METHOD

The rectangular boundary division method has been ex-

tensively studied in the quasi-TEM wave analysis of var-

ious straight transmission line structures [ 17]–[1 8]. It has

been recently shown that the method could be easily used

to analyze planar ring structures [16]. The only difference

between the original and extended one is that Laplace’s

equation has to be solved in the cylindrical coordinate

system and that Bessel functions have to be handled in-

stead of sinusoidal functions.

Fig. 1 shows an example of thick-conductor multiple
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Fig. 1. Multiple planar ring structure with thick conductors on multiple
substrate layers.

planar ring structures on multiple substrate layers. The

region to reanalyzed is divided into subregions of thick-

wall cylindrical tubes as shown in Fig. 2(a). Fig. 2(b)

shows that the cross-section of the thick-wall tube is com-

posed of a few rectangular subregions. The structure to

be analyzed has a metal enclosure, but the dimensions of

the side and top wall can be chosen as large enough as

open boundary is simulated.

Analytical part of the method is developed for the thick-

conductor planar ring whose cross-sectional view together

with four divided regions is shown in Fig. 3. The poten-

tial for each of the four rectangular regions can be ex-

pressed based on the method of the separation of variables

as follows:

(osps~;()~~sh) (la)

c$2(P, Z) = JLo + ~~1 {~2n Sinh UC2,L(z – h)]

+ B2. cd [k2. (Z – h)]} Jo(~2n P)

43(P, z) = ~o
In (c/p)

in (c/r2)
+ ~ijl {A3n sinh [k~. (z – k)]

-i- B3. cosh [ksn (Z – ~)1}

“ [J()(kqnp) + CqnY&n p)]l

(05p sc;h+tszsh+t+hJ
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where Jo and YOdenote the O-th order Bessel functions of
the first and the second kind, respectively. kln ( = k4n), kzn
and k3n are the roots of the following equations:

Jo(kln C) = O (2a)

Ema;
...........................,.~---------------...j......................’

(a) (b)

Fig. 2. (a) A thick-wall cylindrical tube as a typical subregion. (b) Rect-
angular regions in the cross-section of the tube.

Fig. 3. Cross-sectional view and dimensions of a planar ring with thick
conductor and four divided regions.

Jo(k3nr2) Yo(k3nc) – .lo(k3nc) Yo(k3nr2 ) = O (2c)

Al., AZ., B2., A3a, B3n and A4n are unknown coefficients.

Cq. is given by

Jdh. rz ) = _
c~n = –

Jo(k3nC)

Yo(k3nr2) Yo(k3nc)
(3)

J/. is the given potential to the planar ring. The boundary

conditions for the top and bottom walls have been satis-

fied in (la) and (id).

The summation of the Bessel function in ( lc) is in gen-

eral denoted in the form of a linear combination of Bessel

functions as

B,fl (knp) = Jm(knp) + CnYm(knp). (4)

Boundary (conditions required for the continuation of

the potential functions at each interface can be expressed

as follows:

@l(P, h) = #’2(P, h) (O<p<rl)

41(P, ~) = 43(P, ~) (r2spsc) (5a)

$3(/3, h + ~) = c&I(p, h + t) (r2 s p s c) (5b)

The common and unknown potential functions at the in-

terface z = h and z = h + t are denoted by~( p) and g ( ,0),

respectively. These functions are related to the coeffi-

cients of the Fourier series given in (1) using the orthog-
onality of Bessel functions as

2

I

c

Aln = ~ P.f(P) Jo(kln P) d~
c sinh (kl. h) Ji(kln c) o

Jo(k2nrl) = O (2b) (6a)



1896 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 10, OCTOBER 199’2

—

.

J
rl

~

rl

P&? (P) Jo(~2n P) ~P – ~o o P Jo(~2n P) ~P
o 1

1

[!

rl

tanh (kzn t) o
I?f( P) Jo(~2n P) ~P

!

n

Vo o pJo (k*np) Lip11
2

[!

rl

Bzn=zz Pf(P) Jo(kZ,, P) dp
r1Ji(k2nr1) o

!
n

– V() p Jo(kznp) dpo 1

‘~siti~k3nt)[f2 pg(~)Bo(k.~)dp

!

Vo ‘—
in (c/r2) .2

P in (c/P) Bo(h. P) dp 1
[11’—

tanh (k~nt) ,,
pf (p) Bo(kn P) dp

[

Vo c
—

In (c/r2) ,,
P In (c/P) Bo(h P) dp

11

‘[!
c

Pt( P) Bo(kn P) 4r2

!
Vo c—

in (c/rz) ,2
p in (c/p) Bo(k3np) dp

1

(6c)

(6b)

(6d)

(6e)

(6f)

The unknown potential functions for the interfaces are

now approximated with a linear combination of the spline

functions as

f(p) = ,$0 PiE (P) (7a)

m

g(p) = ,~o aF’i(P) (7b)

where

( P – P,-1
(Pi-1 ~ P ~ Pi)

Pi – Pi–1

F,(p) =

/

Pi+l – P
(8)

(P, = P = P,+l)
Pi+l – Pt

Lo (elsewhere)

is the first-order spline function, and p,, and qi (i = O,
. . . m) are spline parameters. The unknown coefficients

in (6:) through (6f) can be expressed in terms of pi and

qi. The total electric field energy in the structure is ex-

pressed as

(9)

where ~k and & denote the dielectric permittivity and the

cross-sectional area of the region k (k = 1, 2, 3 and 4).

Carrying out the integration given in (6), and substituting

them in (1) and (9), the total electric field energy is re-

written as

Mkl

u=
q) v; t

2 In (c/r2)
+ ~ ~ Ktixixj (lo)

inojco

where M = 2m + 1, xi = {po, pl, . . “ , pm, qo, ql,
. . . qn }. Newly introduced coefficients Kij (i, j = O, 1,

2,”:”, M) are given in Appendix.

The remaining boundary condition, the continuity of

the normal electric flux, is satisfied by taking the mini-

mum of the total electric field energy as

au

ap,
—=0 (i=o, l,”””, m;i # S,S + 1) (ha)

au—.
aqt

o (i= O, l,”.”, m; i # ,s, ,s + 1) (llb)

where p~ = XS,p$~~ = xS+l, qs = xm+sandqs+l = x?n+S+l
are the known potentials on the conductors. These con-

ditions result in a set of linear inhomogeneous simulta-

neous equations of the spline parameters as

(i= O, l,””” , M, i g {Q}) (12)

where {Q} = {s, s

pacitance produced

equating the energy

U as

+l,m+s,m+,s+l}.Theta-

by the structure is readily given by

expression stored in a capacitor and

911Au
c=%. (13)
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III. NUMERICAL RESULTS

Since the number of Fourier series terms, n, and the

number of spline knots, m, are unknown finite values in

our numerical processing, convergence property against n

and m has been tested firstly. The rapid change of electric

fields near the conductor edges is taken into account by a

nonuniform discretization procedure. The side and top

walls are kept at far distances, c = 2r2 + 10h and h 1 =

100 h, respectively, in order to make their influence on

capacitance values negligible. Fig. 4(a) and Fig. 4(b)

show the convergence of the normalized capacitance val-

ues with respect to n and m, respectively, for three kinds

of structures, where the circular disk i~sdefined by setting

rl = O and r2 = a. These results indicate that satisfactory

numbers for convergence are in the ranges given by n >

500 and m > 35. The indicated number of spline knots

in Fig. 4 is for zero-thickness conductor structures.

Therefore, this number is doubled for structures with

thick-conductor. In general, the convergence property de-

pends on the normalized dimensions, ~-/c, h/c, w/c, and

r2/c, where w = r2 – rl. In our examples, we have set

as n = 1000 and m = 40. Typical calmputation time for

one capacitance value is about 20 seconds for zero-thick-

ness conductor structures and about 65 seconds for thick-

conductor structures on a SUN-4 workstation.

The problem of circular disks with zero-thickness con-

ductor has been extensively studied by many authors and

exact numerical results for the capacitances have been al-

ready given. The most exact results for the capacitance of

a circular disk seem to have been given in the references

[5]-[7]. Our numerical results for the capacitance of cir-

cular disks with zero-thickness conductor agree well with

those given in the references [5]-[7], as indicated in Fig.

5 where the normalized capacitance C,h / moera 2 is shown

against the normalized substrate thickness, h/a. This fact

confirms the exactness of our method in the zero-thick-

ness limit. Fig. 5 also includes curves showing the influ-

ence of the conductor thickness. The conductor thickness

has a significant effect on the capacitance values for the

cases where fringing fields are prominent as expected.
The presence of the ground conductor on the upper sur-

face of the substrate also has a significant influence on the

capacitance of circular disks. Fig. 6 sh~ows the normalized

capacitance of a disk against the separation between the

disk and the ground conductor on the substrate both for

zero-thickness and thick conductors. This thickness effect

has not been treated until now, to the authors’ knowledge,

but can be analyzed with our method. We can also predict

the influence of a side wall. This influence is weak for

s/h > 10, and keeping the side wall at distance c = 2a
+ 10h is quite reasonable for simulating an open bound-

ary.
Although the direct knowledge of the charge distribu-

tion is not required in our calculation of the capacitance,

we can estimate the charge distribute on by solving a set

of linear inhomogeneous equations and by going back to

(1) to find the potential and electric field in the region.

.5
v
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/~
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Number of Fourier series terms, n
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Number of spline knots, m
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Fig. 4. Convergence of the normalized capacitance of planar structur& (a)

against the numberof the Fourier seriesterms, n (m = 40) and (b) against
the number of th~ spline knots, m (n = 1000). Structure A: Disk, a/h =

1.0, c, = 2.65. Stracture B: Ring, r,/h = 5.0, r2/h = 6.0, e, = 9.6.

Structure C: Disk, a/h = 5.0, C, = 1.0.
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Fig. 5. Normalized capacitance of a thick circular disk against the nor-
malized substrate thickness.

Gate or Maxwell functions as the extreme case are usually

used for the charge distribution as basis in the spectral

domain analysis. It has been shown that neither of these
basis gives good results for intermediate sizes [4], and

therefore, a combination of these two extreme functions

is needed [81. We have calculated the charge distribution
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Fig. 6. Normalized capacitance of a thick circular disk near the ground
conductor on the substrate as a function of the separation.

for the intermediate case as a /lz = 3.0, t = O without any

difficulty and numerical results are shown in Fig. 7(a).

Fig. 7(b) shows the influence of the existence of the

ground conductor near the disk on the charge distribution.

The fringing field of a planar ring is different depending

on whether the position is inside or outside of the ring

since electric charge is asymmetrically distributed about

the mean radius of the ring. This fact is also very difficult

to be incorporated into the spectral domain analysis be-

cause the extent of the asymmet~ depends on the curva-

ture radius. The coupling between the field at one point

of the ring to that at the other point of diametrical oppo-

sition is different depending on whether the point is inside

or outside of the ring. The outside fringing field resembles

the fringing field of a degenerated microstrip line and the

inside one that of degenerated coupled lines, Bedair [10]

has calculated the capacitance of a planar ring giving good

results in the case of wide rings, and has given an explicit

approximation formula. Fig, 8 shows the normalized ca-

pacitance, Ch /Teoe, (r; – r;), of a planar ring as a func-

tion of the curvature radius, Significant differences have

been found between our results for zero-thickness rings

and the results given by [10], for small values of inner

radius. The cukature effect on the capacitance of thick

rings is similar to that of the capacitance of zero-thickness

rings. When a conductor is the thicker, fringing fields are

the more prominent.

The influence of the ground conductors on the substrate

on the capacitance of a planar ring has been also studied.

Such ground conductors can be placed in the structure in

three ways. One way we had treated in a previous paper

is called a coplanar circular ring, where a planar ring has

the ground conductor on both sides as shown in Fig. 9.

Other two ways have the ground conductor outside, as

shown in Fig. 10, or inside, as shown in Fig. 11. The

p/h

(b)

Fig. 7. Normalized charge distribution (a) of a circular disk and (b) of a

circular disk near the ground conductor on the substrate.
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Fig. 8. Normalized capacitance of a thick planar ring.

normalized capacitance of the planar ring is also shown

in Fig. 10 and Fig. 11 as the function of the separation

between the ring and the ground conductor on the sub-

strate.

Again, zero-thickness and thick conductor structures are

treated for rings with the same mean radius, m/h = 5.0.
Although the curves show the same trend in these three

cases, the extent of influence is different depending on the

case. It is of interest to know that the influence depends

on whether one conductor is situated outside or inside the

circular ring. When the conductor is inserted inside the

ring, the curvature effect is weakened. The thickness of



TEFIKU et al.: CAPACITANCE CHARACTERIZATION METHOD 1899

-C-!*
&

I
\

..\
‘.\

‘.>,
—t=o.o –––t/h=o.l

t

‘‘ .>, ----- .t/h=o.05 {
e, = 9.6
rrnlh = 5.0

l,()~uJ__..J
10-1 10°

s/h

Fig. 9. Norrualized capacitance of a coplanar ring as a function of the sep-
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Fig. 10. Nororalized capacitance of a planar ring near the outside ground

conductor on the substrate as a function of the separation.

the conductor has a strong effect on the fields for small

separation, since the electric field is more concentrated

between the conductors. As separation is increased, the

capacitance value naturally approaches the capacitance

value of an isolated planar ring in all cases.

Next, we analyze the planar ring and circular disk

structures in three dielectric layers choosing similar ex-

amples presented in Fig. 12 and Fig. 1.3. It is possible by

using this analysis method to calculate the effective di-
electric constant, i.e. the ratio of the capacitance with the
presence of dielectrics to the capacitance without the pres-

ence of dielectrics. Mathematical expressions for calcu-

lating the capacitance of these structures are more exten-

sive because more divided regions must be used. Fig. 12

I I I

l-’ wfh = 5.0
~

Fig. 11. Normalized capacitance of a planar ring near the inside ground

conductor on the substrte as a function of the separation.
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---- ,/-.

-------- .. B
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1.(I
1(--1 10°
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Fig. 12. Effective dielectric constant of a circular disk with three dielectric
layers, h, = hzj hj = 101z2, c = 2a + 10h2.

and Fig. 13 show the effective dielectric constant of the

circular disk and ring, respectively, with three dielectric

layers in two configurations. It is known that the electfic ~

field is mostly concentrated in the air regions for this kind

of structures, so that only values close to one as the ef-

fective dielectric constants are obtained. The effect of the
conductor thickness can not be neglected anymore as seen
from these figures. In practice, these structures usually

have grooves or pedestals to support the substrate,

those additional structures can be easily incorporated

our calculation.

and

into
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IV. CONCLUSION

An effective analysis method was presented which was

devised for calculating the capacitances of multiple planar

ring structures with thick conductors on multiple substrate

layers. Attention was specially paid to the effects of the

conductor thickness and of the presence of the ground

conductor on the substrate on the capacitance values. The

calculated values of the capacitance of circular disks

fm

showed good agreement with other available data in the

zero-thickness limit. The capacitance values of planar

rings also agreed well with capacitance values calculated

based on the past approximate formulas for wide rings.

The capacitances of the structures with three dielectric

layers were also calculated for both circular disks and

planar rings in two configurations.

The merits of our method are: 1) generality and easi-

ness to be employed in the analysis of complicated planar

structures, 2) simple integrals in the closed form involved

in the analytical part of the method, 3) no necessity of a

prior knowledge of charge distributions on conductors, 4)

only the necessity of potential specification to conductors

in the case of multiple conductors, and 5) very accurate

numerical results with relatively small computational time

and memory capacity. The conductor-thickness of circu-

lar disks and planar rings has been taken into account, to

the authors’ knowledge, for the first time in the analysis

with a rigorous treatment and a variety of numerical ex-

amples.

APPENDIX

The coefficient Kti in (12) is defined as

(0 (elsewhere)

I

Lo (elsewhere)

(A2b)

(A2c)
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~ H4nI~niI~nj (M, +l<i, jSM)
~=1

o (elsewhere)

M2=m, MJ=m+s+l, M=2m +1.

a(kln, ,0]) – Cx(lqn, P())
—

hl(f% – 00)

Gl(kl,, Pi) – ~(kln> Pi–1) —

‘In (Pi ‘- Pi- 1),

CY(kzn, Pl) – a(h, Po)—

~2n(Pl – Po)

CI(ft2~, ~,) – Ct(k2~7 pi–l)
—

‘2. (Pi “- Pi-1)

CY(rtzn, p.) – ~(~2n$ %1)

~2n(o. – P,-l)

Mk3., P,+;, ) – N%, Ps+I)—

~(h> J%+l) – ~(k2n, m)

‘2n(Pi+l – PI)

‘3n(Ps+2 – Ps+l)

@(k3n, P,) – fW3n> ml) _ /W3w A+l) – (W3,,@

k3n(P, -- Pi-1) k3n(Pi+1 – Pi)

Non-primed and primed Z~i-coefficients in (A.2) are re-

lated to the distribution of discretization points on the in-

terfaces, at z = h and at z = h + t,,respectively. In the

present case, it was natural to use similar discretization

points at both interfaces. Therefore, Z~~i = 12~i, Z~~i = 13~i

and lj~l = ll~i.

~ (kn, P1) = knpt Jo(kr Pi) – ~o(krPi)

!

01 co

so(knp~) = o .Jo(k;lP) dp = 2 ~~o J2J+1(kn~i)

(A4a)

B(kn, Pi) = k.p~Bi)(k.Pi) – zo(hPi)

!

PI co

Zo(knPi) = o Bo(knP) dP = 2!~~o B2j+ ~(knpi )

(A4b)

H2n =
E2rl

(k2nr1)3J~(k2nrl) tanh (k2nt)

E2rl
H~n =

(k2nr1)3.1~(k2nrl) sinh (k2nt)

(A5a)

(A5b)

(A5c)

i, =()

i=l, . . ..}n

i=O

i=l, . . ..s

i=s

i=s+i

1901

(A2d)

(A3a)

1 (A3b)

(A3c)

i=s+2, ”*. ,m

E3 c
H3n=— s

(k3,1c) [B~(k3nc) – (r2 /c)2B~(k3,1 r2 )] tanh (kqnt)

(A5e)

(A5f )

where c1 = e,co and e2 = E3 = ~4 = Co.

The summations, So and l., in (A4) are carried out by

using the recurrence relations [19] and the polynomial ap-

proximations [20].
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