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Multiple Substrate Layers
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Abstract—A capacitance characterization method for thick-
conductor multiple planar ring structures on multiple sub-
strates layers has been made for the first time by extending the
rectangular boundary division method. The region to be con-
sidered in the analysis is divided into subregions of thick-wall
cylindrical tubes in each of which Laplace’s equation is solved
by the method of the separation of variables. A special appli-
cation scheme of the boundary conditions is devised to decrease
the number of necessary equations. Numerical results are
shown for circular disk and planar ring structures in compar-
ison with other available data.

I. INTRODUCTION

HE CAPACITANCE characterization of planar ring

structures on multiple substrate layers is desirable for
designing various lumped circuits elements in microwave
integrated circuits. In the past, much attention was paid
to circular disk structures in free space, and later to cir-
cular disks on a dielectric substrate backed by a ground
plane with advent of microwave integrated circuits. The
insertion of a dielectric substrate between the disk and the
ground plane adds more complications in finding analyt-
ical expressions for fields. The problem of the circular
disk has been studied by several authors based on Galer-
kin’s method in the Hankel transform domain [1]-[2], the
method of dual integral equations [3]-[7], and Nobel’s
variational method {8].

These methods have dealt with difficulties in selecting
proper basis functions for the charge distribution on the
disk conductor, or in carrying out the infinite integral in-
cluding Bessel functions. Closed form expressions for the
capacitance of the circular disk have been discussed using
the fact that the fringing field of a circular disk is similar
to that of a degenerated microstrip line [9]-[10], and us-
ing the method of matched asymptotic expansions [11].
A more accurate formula valid for both small and large
disks has been given by Wheeler [12].

The historical background for the capacitance calcula-
tion of a circular disk capacitor together with explicit ap-
proximation expressions for the capacitance of a conduc-
tor patch of arbitrary shape has been described by Kuester
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[13]. The work on the capacitance of the planar ring has
been rarely reported, to the author’s knowledge, perhaps
due to the above mentioned difficulties, although some
data have been published based on Galerkin’s method in
the Hankel transform domain with basis functions sym-
metric about the mean radius [14]-[15]. Closed form
expressions for the fringing fields outside and inside of a
planar ring have been given based on those of degenerated
microstrip lines and coupled straight lines, respectively,
{10}.

We have analyzed the capacitance of zero-thickness
planar ring structures based on the rectangular boundary
division method in a previous paper [16] where it has been
shown that this analysis method was very accurate and
easy to be employed to analyze more complicated planar
ring structures.

In the above mentioned papers, no one has taken into
account the thickness of conductor, multiple ring struc-
tures, and/or multiple substrate layers. In this paper, we
extend the rectangular boundary division method used in
the previous paper to analyze very general planar struc-
tures taking all of such factors into consideration. The
region to be analyzed is divided into subregions of thick-
wall cylindrical tubes. Laplace’s equation is solved in
each region based on the method of the separation of vari-
ables. A special application scheme of the boundary con-
dition is devised to decrease the number of necessary
equations. The capacitances of several planar ring struc-
tures with various conductor thickness are calculated and
numerical results are compared with the available numer-
ical data in the zero-thickness conductor limit cases.

II. EXTENSION OF RECTANGULAR BOUNDARY DIVISION
METHOD

The rectangular boundary division method has been ex-
tensively studied in the quasi-TEM wave analysis of var-
ious straight transmission line structures [17]-[18]. It has
been recently shown that the method could be easily used
to analyze planar ring structures [16]. The only difference
between the original and extended one is that Laplace’s
equation has to be solved in the cylindrical coordinate
system and that Bessel functions have to be handled in-
stead of sinusoidal functions.

Fig. 1 shows an example of thick-conductor multiple
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Fig. 1. Multiple planar ring structure with thick conductors on multiple
substrate layers.

planar ring structures on multiple substrate layers. The
region to be analyzed is divided into subregions of thick-
wall cylindrical tubes as shown in Fig. 2(a). Fig. 2(b)
shows that the cross-section of the thick-wall tube is com-
posed of a few rectangular subregions. The structure to
be analyzed has a metal enclosure, but the dimensions of
the side and top wall can be chosen as large enough as
open boundary is simulated.

Analytical part of the method is developed for the thick-
conductor planar ring whose cross-sectional view together

with four divided regions is shown in Fig. 3. The poten-

tial for each of the four rectangular regions can be ex-
pressed based on the method of the separation of variables
as follows:

91(0, D) = 2 Ay, sinh (k1,2) Jokisp)

O=p=c0=sz=<h (1a)
9200, D = Vo + L {Az, sinh [y 2 = h)
+ BZn cosh [k2n (Z - h’)]}JO(anp)
O=sp=rsh=sz=<h+1 (lb)

+ 2 {As, sinh [ky, (2 — )]

n=1

1
#s3(p, 2) =V ﬁ((cc//—::))

+ Bs, cosh [ks,(z — M)]}
* [Joksn0) + G, Yo(ksnp)]

nh=<p=<ch<z=sh+y (1¢)

9u(p, ) = U Agy sinh [k (h + 1 + hy = D) olksp)

O=<p=ch+t=z=h+t+h)
(1d)

where J, and Y, denote the O-th order Bessel functions of
the first and the second kind, respectively. &y, (= ks,), ko
and k;, are the roots of the following equations:

Jolkin0) = 0
Jolky,r) = 0

(2a)
(2b)
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(@ (b)
Fig. 2. (a) A thick-wall cylindrical tube as a typical subregion. (b) Rect-
angular regions in the cross-section of the tube.

Fig. 3. Cross-sectional view and dimensions of a planar ring with thick
conductor and four divided regions.

Jolksyr2) Yolks,©) — Jolks,©) Yolks, ) = 0 (20)

Ay, Aops Bay, Az, Bz, and Ay, are unknown coefficients.
C;, is given by

_Jolksary) _ Jolkss©)
Yok, 12) Yo(ks,. ©)

V, is the given potential to the planar ring. The boundary
conditions for the top and bottom walls have been satis-
fied in (1a) and (1d).

The summation of the Bessel function in (1¢) is in gen-
eral denoted in the form of a linear combination of Bessel
functions as

B, (ksp) = Jp(kyp) + C, Y,y (kyp). 4)

Boundary conditions required for the continuation of
the potential functions at each interface can be expressed
as follows:

3)

) j—
Gy =

o1(p, B) = da(p, ) (0= p = 1))

¢1(p, h) = d3(p, H) (= p <0 (52)
(o, h + 8 =du(p,h+1) O=<p=r)
$3(p, h + 1) = ¢slp, h + 1) (n=p=<c) (b

The common and unknown potential functions at the in-
terface z = hand z = h + t are denoted by f(p) and g(p),
respectively. These functions are related to the coeffi-
cients of the Fourier series given in (1) using the orthog-
onality of Bessel functions as

2 SC
A ¢? sinh (k;,h) J3ky, ) Jo pf(p) Jolki,p) dp

(6a)
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pf(p) Jotkz, p) do

-W SO o Jolka, 0) dp} (6¢)

2
CZB%(kan c) — VgB%(]@n 1)

1 C
' {sinh (k3 1) { Sn

o In (c/p) Bolks,p) dp}

A3n =

08 (p) Bolks,p) do

N S
In (C/rz) r2

1 S
tanh (ks3,1) |: r2
V

0
n (C/rz)

ef(p) By(ks, p) dp

S _p1n(c/p) Bolkap) de (6d)

2
cBi(ks,c) — r3Bilks,ry)

B3n =

: [ S i of(p) Byks,p) dp

r

p In (c/p) Bolks,p) dp] (6e) -

I

The unknown potential functions for the interfaces are
now approximated with a linear combination of the spline
functions as

__ N SC
In (C/rz) ra

2
c? sinh (ky, 1) JiCks, )

of(p) Jolks, p) dp

A4n =

(61)

flo) = 2 piF,(p) (7)
g(p) = 21 q:Fi(p) (7b)
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where
P = P
—— (o = p = p)
Pi ™ Pi-1

Fi(p) = Pit1 — P ®

“E—S (p, = p = 1)
Pi+1 = Py
0 (elsewhere)

is the first-order spline function, and p,, and ¢g; i = O,

-, m) are spline parameters. The unknown coeflicients
in (6a) through (6f) can be expressed in terms of p; and
g;. The total electric field energy in the structure is ex-

pressed as
2
9%%
dp
5 2
+ <—?—k> }p dp dz
dz

where ¢, and S; denote the dielectric permittivity and the
cross-sectional area of the region k (k = 1, 2, 3 and 4).
Carrying out the integration given in (6), and substituting
them in (1) and (9), the total electric field energy is re-
written as

®

€0 V(z)l

M M
= e/ + 2 2 Kyxx, (10)

i=0j=0 "7
where M = 2m + 1> X = {pO’ P, " 5 Pms 40, 415
***, gy} Newly introduced coefficients K;; (i,j = 0, 1,
2, - -+, M) are given in Appendix.

The remaining boundary condition, the continuity of
the normal electric flux, is satisfied by taking the mini-
mum of the total electric field energy as

oU
— =0 (=01, mi+s, s+ 1 (1la)
ap,
19
— =0 @i=0,1,---,mi#s,s+1) (11b)
dq,
Whereps = Xy Ds+1 = Xst10 s = Xpprs and s+1 = Ximts+1

are the known potentials on the conductors. These con-
ditions result in a set of linear inhomogeneous simulta-
neous equations of the spline parameters as

s+ 1 m+s+1
2 Kyx = —2 Kx — 2
i o s T e
(=01, , M;ig{Q}) (12)

where {Q} = {s,s + 1, m + s, m + s + 1}. The ca-
pacitance produced by the structure is readily given by
equating the energy expression stored in a capacitor and
U as

U

c=:;.
Ve

13)
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III. NUMERICAL RESULTS

Since the number of Fourier series terms, #, and the

number of spline knots, m, are unknown finite values in .

our numerical processing, convergence property against n
and m has been tested firstly. The rapid change of electric
fields near the conductor edges is taken into account by a
nonuniform discretization procedure. The side and top
walls are kept at far distances, ¢ = 2r, + 10h and b =
100 &, respectively, in order to make their influence on
capacitance values negligible. Fig. 4(a). and Fig. 4(b)
show the convergence of the normalized capacitance val-
ues with respect to n and m, respectively, for three kinds
of structures, where the circular disk is defined by setting
r; = 0 and r, = a. These results indicate that satisfactory
numbers for convergence are in the ranges given by n =
500 and m = 35. The indicated number of spline knots
in Fig. 4 is for zero-thickness conductor structures.
Therefore, this number is doubled for structures with
thick-conductor. In general, the convergence property de-
pends on the normalized dimensions, /¢, h/c, w/c, and
r,/c, where w = r, — r;. In our examples, we have set
as n = 1000 and m = 40. Typical computation time for
one capacitance value is about 20 seconds for zero-thick-
ness conductor structures and about 65 seconds for thick-
conductor structures on a SUN-4 workstation.

The problem of circular disks with zero-thickness con-
ductor has been extensively studied by many authors and
exact numerical results for the capacitances have been al-
ready given. The most exact results for the capacitance of
a circular disk seem to have been given in the references
[51-[7]. Our numerical results for the capacitance of cir-
cular disks with zero-thickness conductor agree well with
those given in the references [5]-[7], as indicated in Fig.
5 where the normalized capacitance Ch / wege,a” is shown
against the normalized substrate thickness, & /a. This fact
confirms the exactness of our method in the zero-thick-
ness limit. Fig. 5 also includes curves showing the influ-
ence of the conductor thickness. The conductor thickness
has a significant effect on the capacitance values for the
cases where fringing fields are prominent as expected.

The presence of the ground conductor on the upper sur-
face of the substrate also has a significant influence on the
capacitance of circular disks. Fig. 6 shows the normalized
capacitance of a disk against the separation between the
disk and the ground conductor on the substrate both for
zero-thickness and thick conductors. This thickness effect
has not been treated until now, to the authors’ knowledge,
but can be analyzed with our method. We can also predict
the influence of a side wall. This influence is weak for
s/h = 10, and keeping the side wall at distance ¢ = 2a
+ 104 is quite reasonable for simulating an open bound-
. ary.

Although the direct knowledge of the charge distribu-
tion is not required in our calculation of the capacitance,
we can estimate the charge distribution by solving a set
of linear inhomogeneous equations and by going back to
(1) to find the potential and electric field in the region.

1897

Q
S S
S T ——t=00 _
g 1 t/h =0.1 B A
2.0 et T
T 7
B I Cc 1
Té - ;/ ——————————————————
fy |
i N i n 1 L 2
1.05 T000 2000

Number of Fourier series terms, n
. © :

&
o

N
=)
=
(
[}
l:’
1
adhie
>
I e
OD
=
o3

b 4

Normalized capacitance

s da g e by by by

60

Number of spline knots, m
(b)

Fig. 4. Convergence of the normalized capacitance of planar structures (a)
against the number of the Fourier series terms, n (m = 40) and (b) against
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Fig. 5. Normalized capacitance of a thick circular disk against the nor-
malized substrate thickness.

Gate or Maxwell functions as the extreme case are usually
used for the charge distribution as basis in the spectral
domain analysis. It has been shown that neither of these
basis gives good results for intermediate sizes [4], and
therefore, a combination of these two extreme functions
is needed [8]. We have calculated the charge distribution
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Fig. 6. Normalized capacitance of a thick circular disk near the ground
conductor on the substrate as a function of the separation.

for the intermediate case as a/h = 3.0, t = 0 without any
difficulty and numerical results are shown in Fig. 7(a).
Fig. 7(b) shows the influence of the existence of the
ground conductor near the disk on the charge distribution.

The fringing field of a planar ring is different depending
on whether the position is inside or outside of the ring
since electric charge is asymmetrically distributed about
the mean radius of the ring. This fact is also very difficult
to be incorporated into the spectral domain analysis be-
cause the extent of the asymmetry depends on the curva-
ture radius. The coupling between the field at one point
of the ring to that at the other point of diametrical oppo-
sition is different depending on whether the point is inside
or outside of the ring. The outside fringing field resembles
the fringing field of a degenerated microstrip line and the
inside one that of degenerated coupled lines. Bedair [10]
has calculated the capacitance of a planar ring giving good
results in the case of wide rings, and has given an explicit
approximation formula. Fig. 8 shows the normalized ca-
pacitance, Ch /wege, (r3 — r3), ofa planar ring as a func-
tion of the curvature radius. Significant differences have
been found between our results for zero-thickness rings
and the results given by [10], for small values of inner
radius. The curvature effect on the capacitance of thick
rings is similar to that of the capacitance of zero-thickness
rings. When a conductor is the thicker, fringing fields are
the more prominent.

The influence of the ground conductors on the substrate
on the capacitance of a planar ring has been also studied.
Such ground conductors can be placed in the structure in
three ways. One way we had treated in a previous paper
is called a coplanar circular ring, where a planar ring has
the ground conductor on both sides as shown in Fig. 9.
Other two ways have the ground conductor outside, as
shown in Fig. 10, or inside, as shown in Fig. 11. The
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Fig. 7. Normalized charge distribution (a) of a circular disk and (b) of a
circular disk near the ground conductor on the substrate.
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Fig. 8. Normalized capacitance of a thick planar ring.

normalized capacitance of the planar ring is also shown
in Fig. 10 and Fig. 11 as the function of the separation
between the ring and the ground conductor on the sub-
strate.

Again, zero-thickness and thick conductor structures are
treated for rings with the same mean radius, 7, /# = 5.0.
Although the curves show the same trend in these three
cases, the extent of influence is different depending on the
case. It is of interest to know that the influence depends
on whether one conductor is situated outside or inside the
circular ring. When the conductor is inserted inside the
ring, the curvature effect is weakened. The thickness of
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Fig. 10. Normalized capacitance of a planar ring near the outside ground
conductor on the substrate as a function of the separation.

the conductor has a strong effect on the fields for small
separation, since the electric field is more concentrated
between the conductors. As separation is increased, the
capacitance value naturally approaches the capacitance
value of an isolated planar ring in all cases.

Next, we analyze the planar ring and circular disk
structures in three dielectric layers choosing similar ex-
amples presented in Fig. 12 and Fig. 13. It is possible by
using this anal)fsis method to calculate the effective di-
electric constant, i.e. the ratio of the capacitance with the
presence of dielectrics to the capacitance without the pres-
ence of dielectrics. Mathematical expressions for calcu-
lating the capacitance of these structures are more exten-
sive because more divided regions must be used. Fig. 12
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C(e)/Cle, = 1.0)

Fig. 12. Effective dielectric constant of a circular disk with three dielectric

layers, h, = hy, by = 10h,, ¢ = 2a + 10h,.

and Fig. 13 show the effective dielectric constant of the
circular disk and ring, respectively, with three dielectric
layers in two configurations. It is known that the electric
field is mostly concentrated in the air regions for this kind
of structures, so that only values close to one as the ef-
fective dielectric constants are obtained. The effect of the
conductor thickness can not be neglected anymore as seen
from these figures. In practice, these structures usually
have grooves or pedestals to suppott the substrate, and
those additional structures can be easily incorporated into
our calculation. ‘
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IV. CoNCLUSION
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showed good agreement with other available data in the
zero-thickness limit. The capacitance values of planar
rings also agreed well with capacitance values calculated
based on the past approximate formulas for wide rings.
The capacitances of the structures with three dielectric-
layers were also calculated for both circular disks and
planar rings in two configurations.

The merits of our method are: 1) generality and easi-
ness to be employed in the analysis of complicated planar
structures, 2) simple integrals in the closed form involved
in the analytical part of the method, 3) no necessity of a
prior knowledge of charge distributions on conductors, 4)
only the necessity of potential specification to conductors
in the case of multiple conductors, and 5) very accurate
numerical results with relatively small computational time
and memory capacity. The conductor-thickness of circu-
lar disks and planar rings has been taken into account, to
the authors’ knowledge, for the first time in the analysis
with a rigorous treatment and a variety of numerical ex-
amples.

APPENDIX
The coefficient K;; in (12) is defined as

An effective analysis method was presented which was K; = Kj (A)
devised for calculating the capacitances of multiple planar  pere
ring structures with thick conductors on multiple substrate -
layers. Attention was specially paid to the effects of the . ..
conductor thickness and of the presence of the ground Ky = ,El Hylyilyy O =i, j = My) (A2a)
conductor on the substrate on the capacitance values. The
calculated values of the capacitance of circular disks 0 (elsewhere)
Zl Hy Ly 1y O=ij=M)
N
2 — Hy Ly Ly 0<i< ;
KZij — a1 2n42ni 42nj ( =1l = M], M2 + 1= J = M3) (A2b)
L Hy, Lyl My + 1 < i, j< M)
0 (elsewhere)
o ‘
2 Hyloly My + 1 < i, j < M)
2 = HybyLy M +1<i< ~
K3ij=§”:1 by My + 1 =i M, My +1=<j<M) (A20)

2 Hylyuliy My + 1 <ij< M)

k 0 (elsewhere)
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2 Hy, Ll My +1=ij<M '
Pt 4n t4nildn ( 2 L] ) (A2d)

4 =
0 (elsewhere)
Mi=s,My=m,My=m+s+1,M=2m+ 1.
_ ok, p1) — alkis, o) i=0
kin(p1 — 0o)
L, = (A3a)
a(ki,, pi) = alkyy pi-y) _ ok, piv1) — alkyy, p,) i=1 - .m
ki, (o; = pi-1) kin (i1 = 0) ’ ’
_alky, p1) — alky,, po) i 0
k(o1 — po)
akm 1) kna i— km i — kra i
L, = (eany 1) = alhon, piz1) _ alkp, Piv1) — alkon, pi) Po 1o s—1 (A3b)
kan (Pi = Pi-1) ky (piv1 — 0,)
O5(k2n’ ps) B a(k2n’ ps—-l) =35
ky (05 — ps=1)
. 6(k3ns Pst2) — B(ka’m Ps+1) _ -
i=s+1
k3n(ps+2 - ps+1)
I3m = (A3C)
B(k3n’ pl) - B(k.’:n, pt—l) _ B(kSn’ p1+1) - B(k?an’ pl) =542 m
k3n (0, — 0i-1) kan(piv1 = i) ’ ’
Non-primed and primed I,;-coefficients in (A.2) are re- €3¢

lated to the distribution of discretization points on the in- Hy, = ke V1B &) — (rr /2B cr. )] tanh (ke f
terfaces, at z = hand at z = h + . respectively. In the (s O 1Bihsn ) 2/ ey Bilksur2)] (2a?)

present case, it was natural to use similar discretization (A54d)
points at both interfaces. Therefore, L,; = L, I4,; = L,
" €3C
and I, = Iy H, = 32 n2 :
(k3. ©)'[Bi(ks,¢) — (r2/¢)"Bi(ksyr2)] sinh (k3, 1)
a(km pz) = knthO(knpi) - SO(knpi) (Ase)
ol @ 640
Hy, = ASf
Solknpi) = SO Jotk,p) dp = ZEO oy 11Ky 01) " (kg € 1kan ©) tanh (kg o) (A5
Ad where €; = €,¢pand €, = €3 = €4 = €.
(Ada) The summations, S, and I, in (A4) are carried out by
using the recurrence relations [19] and the polynomial ap-
Bky, pi) = kup,Bo(knp;) — Lol p:) proximations [20].
Pt =)
otk pi) = SO By(k,p) dp = 2 J;O By 1k, p:) ACKNOWLEDGMENT
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